Shifts in the selectivity filter dynamics cause modal gating in K+ channels
نویسندگان
چکیده
منابع مشابه
Selectivity filter gating in large-conductance Ca2+-activated K+ channels
Membrane voltage controls the passage of ions through voltage-gated K (K(v)) channels, and many studies have demonstrated that this is accomplished by a physical gate located at the cytoplasmic end of the pore. Critical to this determination were the findings that quaternary ammonium ions and certain peptides have access to their internal pore-blocking sites only when the channel gates are open...
متن کاملPreferential binding of K+ ions in the selectivity filter at equilibrium explains high selectivity of K+ channels
K(+) channels exhibit strong selectivity for K(+) ions over Na(+) ions based on electrophysiology experiments that measure ions competing for passage through the channel. During this conduction process, multiple ions interact within the region of the channel called the selectivity filter. Ion selectivity may arise from an equilibrium preference for K(+) ions within the selectivity filter or fro...
متن کاملVoltage-dependent inactivation gating at the selectivity filter of the MthK K+ channel
Voltage-dependent K(+) channels can undergo a gating process known as C-type inactivation, which involves entry into a nonconducting state through conformational changes near the channel's selectivity filter. C-type inactivation may involve movements of transmembrane voltage sensor domains, although the mechanisms underlying this form of inactivation may be heterogeneous and are often unclear. ...
متن کاملTwo Stable, Conducting Conformations of the Selectivity Filter in Shaker K+ Channels
We have examined the voltage dependence of external TEA block of Shaker K(+) channels over a range of internal K(+) concentrations from 2 to 135 mM. We found that the concentration dependence of external TEA block in low internal K(+) solutions could not be described by a single TEA binding affinity. The deviation from a single TEA binding isotherm was increased at more depolarized membrane vol...
متن کاملIon conduction and selectivity in K(+) channels.
Potassium (K(+)) channels are tetrameric membrane-spanning proteins that provide a selective pore for the conductance of K(+) across the cell membranes. These channels are most remarkable in their ability to discriminate K(+) from Na(+) by more than a thousandfold and conduct at a throughput rate near diffusion limit. The recent progress in the structural characterization of K(+) channel provid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2019
ISSN: 2041-1723
DOI: 10.1038/s41467-018-07973-6